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[1] We present a novel approach to modeling stochastic multiphase flow problems, for
example, nonaqueous phase liquid flow, in a heterogeneous subsurface medium with
random soil properties, in particular, with randomly heterogeneous intrinsic permeability
and soil pore size distribution. A stochastic numerical model for steady state water-oil
flow in a random soil property field is developed using the Karhunen-Loeve moment
equation (KLME) approach and is numerically implemented. An exponential model is
adopted to define the constitutive relationship between phase relative permeability and
capillary pressure. The log-transformed intrinsic permeability Y(x) and soil pore size
distribution b(x) are assumed to be Gaussian random functions with a separable
exponential covariance function. The perturbation part of these two log-transformed soil
properties is then decomposed into an infinite series based on a set of orthogonal normal
random variables {xn}. The phase pressure, capillary pressure, and phase mobility are
decomposed by polynomial expansions and the perturbation method. Combining these
expansions of Y(x), b(x) and dependent pressures, the steady state water-oil flow equations
and corresponding boundary conditions are reformulated as a series of differential
equations up to second order. These differential equations are solved numerically, and the
solutions are directly used to construct moments of phase pressure and capillary pressure.
We demonstrate the validity of the proposed KLME model by favorably comparing first-
and second-order approximations to Monte Carlo simulations. The significant
computational efficiency of the KLME approach over Monte Carlo simulation is also
illustrated.
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1. Introduction

[2] Nonaqueous phase liquids (NAPLs), such as chlori-
nated solvents, hydrocarbon fuels, and polychlorinated
biphenyls, have been used extensively in private industry,
military installations and Department of Energy (DOE)
facilities. NAPLs may be leaking from a damaged or
decaying storage vessel (e.g., in a gasoline station, refinery,
dry-cleaning operation), improperly constructed storage and
distribution systems, a waste disposal lagoon, or may be
spilt during transport and use in a manufacturing process
(e.g., during degreasing of metal parts, in the electronics
industry to clean semiconductors, or in an airfield for
cleaning jet engines). NAPL spills during transport and
leaks from underground storage tanks have inevitably
occurred and represent a major risk to water supply, since

even a small amount of NAPLs can contaminate large
volumes of groundwater. NAPL ganglia (blobs) trapped in
the porous soil or rock matrix at residual saturation are a
continuous source of contamination to the aquifer or the soil
vapor, through dissolution or vaporization [Garg and Rixey,
1999].
[3] To design a remediation scheme, it is important to

understand at a basic level the physicochemical processes
that control the movement and mass transfer of NAPLs in
the subsurface, both in the unsaturated and the water-
saturated regions. The conceptual models of a typical
contaminant spill into porous and fractured media have
been put forward by several researchers [Abriola, 1989;
Mercer and Cohen, 1990; Keller et al., 2000]. In some
cases, the contaminant is dissolved in water and thus travels
through the aquifer as a solute. More typically a contami-
nant enters the subsurface as a liquid phase separated from
the gaseous or aqueous phases present. NAPLs travel first
through the unsaturated zone, under three-phase (water, air,
oil) flow conditions, displacing air and water. The variations
in matrix permeability and capillarity, due to the heteroge-
neity of the porous medium, result in additional deviations
from vertical flow. Under some situation, less permeable
layers (e.g., silt or clay lenses, or even tightly packed sand),
or materials with smaller pores will make NAPL flow
mostly in horizontal direction, until it encounters a path of
less resistance. Microfractures in the soil matrix are also
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important in allowing the NAPL to flow through low-
permeability lenses [Keller et al., 2000]. NAPLs are trapped
within the porous medium when the capillary forces are
sufficiently strong to overcome the viscous and gravitational
forces acting on the NAPLs.
[4] From this simplified description of the processes

occurring as a NAPL moves through the subsurface, it is
clear that soil heterogeneity plays a major role in the
distribution of the spill, as well as in the transfer of NAPL
mass to the surrounding phases [e.g., Keller and Chen,
2002]. It is critical to understand how these processes are
enhanced or limited by large variations in soil properties,
including absolute permeability, porosity, fraction of
organic content, capillary pressure-saturation and relative
permeability-saturation relationships, soil density, etc. These
properties may be treated as random space functions and the
equations governing multiphase flow in these formations
become stochastic. Solving the stochastic multiphase flow
equations is a challenging task.
[5] In the last two decades, stochastic approaches to flow

and transport in heterogeneous porous media have been
extensively studied and developed, which are summarized
by Dagan [1989], Gelhar [1993], and Zhang [2002]. The
most common approach is to solve such stochastic flow
equations numerically by Monte Carlo simulation. Using
this technique, a large number of equally probable random
realizations of the soil properties are generated using geo-
statistical techniques such as Gaussian sequential simula-
tion. The flow equations can be solved numerically by a
conventional deterministic numerical flow simulator for
each realization, and the moments of the flow system output
can be obtained by averaging the results from all realiza-
tions. This approach is conceptually straightforward, but it
requires intensive computational effort since the number of
realizations needed to adequately describe the flow system
is relatively high. Moreover, the computational effort for
each realization is large in order to solve high space-time
fluctuations in random parameters with fine numerical
space-time grids. Therefore Monte Carlo simulations are
primarily used as a comparative reference for direct meth-
ods of solution of stochastic flow equations, which allow
one to compute statistical moments of hydrogeologic vari-
ables, such as fluid pressure and velocity, without the need
for generating a large number of realizations of these
variables.
[6] One direct approach is to formulate integrodifferen-

tial moment equations with the aid of Green’s function,
make some approximations and then solve the equations
numerically. The idea is to apply the perturbation scheme
first, and then write moment equations based on a Green’s
function. Another direct approach is to derive a system of
partial differential moment equations governing the statis-
tical moments of flow quantities in a straightforward
manner and then solve them analytically or numerically.
Chrysikopoulos et al. [1990] presented the derivation of
closed form analytical solutions of stochastic partial dif-
ferential equations describing the transport of contaminants
in porous media using small perturbation techniques.
Compared to Monte Carlo simulation, direct approaches
provide a more comprehensive and efficient method for
analyzing flow system in heterogeneous media by repre-
senting the entire flow system by several stochastic

parameters. Most of the previous and current stochastic
modeling via direct methods have focused on steady or
transient saturated flow, and single phase unsaturated flow.
Little work has been done on stochastic modeling of these
properties under the condition of multiphase flow, both
due to the nonlinear character of the governing equations
and their interdependence, as well as due to lack of
extensive field data of properties representing spatial
variability. Data limitations are being addressed by new
advances in soil characterization technologies, for example
using multiprobe cone penetrometers, geophysical meth-
ods, and interphase partitioning tracers [e.g., Kram et al.,
2001]. Several researchers have recently proposed a few
stochastic analyses of multiphase flow. Chang [1995] and
Abdin and Kaluarachchi [1997a, 1997b] presented a
spectral/perturbation approach to analyze two- and three-
phase flow stochastically. Ghanem and Dham [1998]
applied Karhunen-Loeve decomposition technology and
polynomial chaos expansion to stochastic variables of
two-phase flow and solved the corresponding moments
numerically.
[7] Zhang [1998, 1999], Zhang and Sun [2000], and

Zhang and Lu [2002] proposed the moment equation
method based on a perturbation analysis by translating
stochastic partial differential equations to partial differential
moment equations, and solving them numerically. Recently,
Zhang and Lu [2004] combined Karhunen-Loeve decom-
position with Moment Equation methods, i.e., KLME, to
obtain higher-order (>1) approximations of the hydraulic
head and flux for saturated flow in randomly heterogeneous
porous media, and solved the resulting equations numeri-
cally. Yang et al. [2004] then applied KLME to saturated-
unsaturated one-phase flow. In contrast with the polynomial
chaos method [Ghanem, 1999] and the conventional
moment equation method [Zhang, 1998], the KLME method
solves the deterministic coefficients of the dependent vari-
able expansion series in different orders, and then constructs
moments of the variables in different orders instead of
solving the covariance equations. The KLME method has
proven to be more efficient computationally than Monte
Carlo and CME approach for saturated water flow and
unsaturated water flow [Lu and Zhang, 2005; Yang et al.,
2004].
[8] In this paper, we implement KLME for a two-phase

(water-oil) steady state flow system. Both the intrinsic
permeability and pore size distribution are considered
stochastic soil properties. Thus we address the challenging
issue of stochastic permeability and capillary pressures.
First, we derive the differential equations using the KLME
approach, and then we discretize and code them in a
numerical solver called STO-2PHASE. We then obtain
higher orders of the moments of stochastic output variables.
Finally, we conduct two cases studies and perform a
comparable Monte Carlo simulation in order to evaluate
the limitations and validity of the KLME method applied in
this study.

2. Mechanics of Two-Phase Flow in Porous Media

[9] We consider a steady water-oil flow in unsaturated
porous media. The porous medium and fluids are consid-
ered incompressible and under isothermal conditions. The
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conservation equations and Darcy’s relationship can be
written as [Bear, 1972]

r � qw xð Þ ¼ 0;
r � qo xð Þ ¼ 0;

ð1Þ

qw xð Þ ¼ �lw r � Pw xð Þ þ rwg½ 	;
qo xð Þ ¼ �lo r � Po xð Þ þ rog½ 	; ð2Þ

subject to boundary conditions

Pw xð Þ ¼ Pw0 xð Þ; Po xð Þ ¼ Po0 xð Þ; x 2 GD; ð3Þ

qw xð Þ � n xð Þ ¼ Qw xð Þ; qo xð Þ � n xð Þ ¼ Qo xð Þ; x 2 GN ;

ð4Þ

where lw = k(x)krw(Sw)/mw and lo = k(x)kro (So)/mo are water
and oil phase mobility; qi is the water (i = w) and oil (i = o)
flux; x is the position vector in 2-D or 3-D; Pi is the i phase
pressure; ri is the i phase density; kri is the i phase relative
permeability; mi is the i phase dynamic viscosity; Pi0 is the
constant i phase pressure on the Dirichlet boundary segment
GD; Qi is the constant i phase flux across Neuman boundary
segments GN; Si is the i phase saturation; g is the gravity
vector; k is the intrinsic permeability of porous media; n is
the outward unit vector normal to the boundary GN.
[10] Letting Zw(x) = lnlw(x), Zo(x) = lnlo(x), and

combining (1) and (2) gives the governing flow equations as

@2Pw xð Þ
@x2i

þ @Zw xð Þ
@xi

@Pw xð Þ
@xi

þ rwgdi1

� �
¼ 0 ð5Þ

@2Po xð Þ
@x2i

þ @Zo xð Þ
@xi

@Po xð Þ
@xi

þ rogdi1

� �
¼ 0; ð6Þ

subject to boundary conditions

Pw xð Þ ¼ Pw0 xð Þ; Po xð Þ ¼ Po0 xð Þ; x 2 GD; ð7Þ

ni xð Þ exp Zw xð Þ½ 	 @Pw xð Þ
@xi

þ rwgdi1

� �
¼ �Qw xð Þ;

ni xð Þ exp Zo xð Þ½ 	 @Po xð Þ
@xi

þ rogdi1

� �
¼ �Qo xð Þ;

x 2 GN ; ð8Þ

where di1 is the Krönecker delta function, which equals 1
when i is 1 (upward direction) or 0 otherwise.
[11] The constitutive relationships of relative permeabil-

ity krw, kro versus saturation S or capillary pressure Pc have
to be specified. Empirical instead of theoretical relationships
are commonly used. There are several postulated models,
for example those based on van Genuchten’s [1980]
relationships. Here we adopt exponential-type constitutive
relationships similar to those used by Chang [1995]:

krw ¼ exp �acbcPc½ 	 kro ¼ 1� exp �acbcPc½ 	; ð9Þ

where ac is the soil pore size distribution index; bc is the
ratio of water surface tension to oil-water interfacial tension,
and is considered as a deterministic constant, depending
only on fluid properties. Typically in the literature the
assumption is made that soil properties (k, ac) are
homogenous in the domain, which might seriously under-
predict or overpredict the movement of NAPLs, and thus
provides an inaccurate understanding of the extent of
contamination.
[12] In this study, we treat k and ac as random fields

subject to log normal distribution. For mathematical
simplicity, let a = acbc and ln a = b, then the relative
permeabilities can be expressed as

krw ¼ exp �aPc½ 	 ¼ exp � exp bð ÞPc½ 	 ð10Þ

kro ¼ 1� exp �aPc½ 	 ¼ 1� exp � exp bð ÞPc½ 	: ð11Þ

[13] The exponential functional relationship is used given
that it allows a tractable solution to the flow equations.
Abdin and Kaluarachchi [1997b] verified the applicability
of these constitutive relationships in a series of comparisons
with the widely used van Genuchten [1980] model using
real soil properties. Their results indicate a reasonable
agreement between these two models.
[14] The difficulty in solving these stochastic equations (5)

and (6) by Monte Carlo approach is the intensive compu-
tational effort since these are typically very large (many
grid blocks are required for an accurate solution) matrix
systems of highly nonlinear, discrete equations and large
number of realizations required in MC. For this reason, we
would like to resort to direct stochastic approaches instead
of Monte Carlo methods to solve the stochastic multiphase
flow system.

3. Karhunen-Loeve Expansion of Intrinsic
Permeability

[15] It has been known for a long time that there is a
close connection between stochastic processes and orthog-
onal polynomials [Weiner, 1930]. The approximate solution
techniques based on classical orthogonal polynomials are
generally known as spectral methods. Karhunen-Loeve
(KL) expansion of a stochastic process a(x, q), which was
derived by Karhunen [1947] and Loeve [1977] indepen-
dently, is based on the spectral decomposition of the
covariance function of a, Caa(x, y), with a set of orthogonal
polynomials [Courant and Hilbert, 1953]. Here, x and y
indicate spatial locations, while the argument q denotes the
random nature of the corresponding quantity. Ghanem and
Dham [1998] applied the KL expansion to decompose the
log-transformed intrinsic permeability of the medium
assuming normal distribution: Y(x, q) = ln [k(x, q)], where
k is the intrinsic permeability, x is the position in spatial
domain D, and q belongs to the probability space W. The
log-transformed permeability can be written as Y(x, q) =
hY(x, q)i + Y0(x, q), where h�i denotes the expected mean
operator, and Y0(x, q) represents the fluctuations around the
mean. Then, the covariance of log intrinsic permeability can
be expressed as CY(x, y) = hY0(x, q)Y0(y, q)i. CY(x, y) is
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bounded, symmetrical and positive definite, and hence can
be decomposed as

CY x; yð Þ ¼
X1
n¼1

lnfn xð Þfn yð Þ; ð12Þ

where ln and fn(x) are the eigenvalues and eigenvectors of
the covariance kernel, respectively. Eigenvalues and
eigenvectors can be solved from the integral equation

Z
D

CY x; yð Þf xð Þdx ¼ l f yð Þ: ð13Þ

Owing to the symmetry and positive definiteness of the
covariance function [Loeve, 1977], the eigenvectors are
orthogonal and form a complete set:

Z
D

fn xð Þfm xð Þdx ¼ dnm; ð14Þ

where dnm is the Krönecker delta function.
[16] The perturbation part of log intrinsic permeability

can be expanded in terms of eigenfunctions as

Y 0 x; qð Þ ¼
X1
n¼1

xn qð Þ
ffiffiffiffiffi
ln

p
fn xð Þ; ð15Þ

where {xn(q)} forms a set of orthogonal random variables,
and has properties of hxn(q)i = 0, and hxn(q)xm(q)i = dnm.
Because Y(x, q) is assumed Gaussian distributed, xi (q)
forms a Gaussian vector, and any subset of xi(q) is jointly
Gaussian:

x1 qð Þ � � � x2nþ1 qð Þ
� �

¼ 0 ð16Þ

x1 qð Þ � � � x2n qð Þh i ¼
X2n
i;j¼1

Y
xi qð Þxj qð Þ
� �

: ð17Þ

[17] For some special types of covariance functions,
analytical solution of eigenvalues and eigenfunctions can
be found from (13). In general cases, they have to be solved
numerically via iterative methods or a Galerkin-type method
[Ghanem and Spanos, 1991].
[18] The eigenvalues decrease monotonically, guaranteed

by the symmetry of the covariance function [Ghanem and
Dham, 1998]. The rate of decay is subject to the correlation
length of the intrinsic permeability field, i.e., the shorter the
correlation length; the more terms are required in the
expansions. Zhang and Lu [2004] discussed this issue in
detail in their application of KLME to saturated flow.

4. Two-Phase Flow KL-Based Moment Equations
(KLME)

[19] Zhang and Lu [2004] pioneered the combination of
the KL method with high-order perturbation methods to set
up KL-based Moment Equations (KLME) for saturated
flow. In this section, we apply the KLME approach to
steady state two-phase (water-oil) flow, to derive higher-
order approximations for the mean and variance of phase

pressures. The log-transformed phase mobility, Zw(x) =
ln lw(x), and Zo(x) = lnlo(x) can be written as

Zw xð Þ ¼ lnlw xð Þ ¼ Y xð Þ � ln mw � exp b xð Þ½ 	Pc xð Þ ð18Þ
Zo xð Þ ¼ lnlo xð Þ ¼ Y xð Þ � ln mo

þ ln 1� exp � exp b xð Þ½ 	Pc xð Þ½ 	f g: ð19Þ

The phase pressures, capillary pressure and phase
mobility can be expressed as infinite series:

Pw xð Þ ¼ P 0ð Þ
w xð Þ þ P 1ð Þ

w xð Þ þ P 2ð Þ
w xð Þ þ � � � ;

Po xð Þ ¼ P 0ð Þ
o xð Þ þ P 1ð Þ

o xð Þ þ P 2ð Þ
o xð Þ þ � � � ;

Pc xð Þ ¼ P 0ð Þ
c xð Þ þ P 1ð Þ

c xð Þ þ P 2ð Þ
c xð Þ þ � � � ;

ð20Þ

Zw xð Þ ¼ Z 0ð Þ
w xð Þ þ Z 1ð Þ

w xð Þ þ Z 2ð Þ
w xð Þ þ � � � ;

Zo xð Þ ¼ Z 0ð Þ
o xð Þ þ Z 1ð Þ

o xð Þ þ Z 2ð Þ
o xð Þ þ � � � ;

ð21Þ

where Pw
(n), Po

(n), Pc
(n) are terms of order ss

n in a statistical
sense, ss is the standard deviation of s = k, b. The
derivations of Zw

(n) and Zo
(n) (n = 0, 1, 2) are presented in

Appendix A.
[20] Substituting (20) and (21) into (5) and (6), and

collecting terms at the same order generates the differential
equations for each order, as follows: zeroth-order differen-
tial equations

@2P 0ð Þ
w xð Þ
@x2i

þ @Z 0ð Þ
w xð Þ
@xi

@P 0ð Þ
w xð Þ
@xi

þ rwgdi1

� �
¼ 0;

@2P 0ð Þ
o xð Þ
@x2i

þ @Z 0ð Þ
o xð Þ
@xi

@P 0ð Þ
o xð Þ
@xi

þ rogdi1

� �
¼ 0;

ð22Þ

with boundaries

P 0ð Þ
w xð Þ ¼ Pw0 xð Þ; P 0ð Þ

o xð Þ ¼ Po0 xð Þ; x 2 GD; ð23Þ

ni xð Þ @P 0ð Þ
w xð Þ
@xi

þ rwgdi1

� �
¼ �Qw xð Þ

exp Z
0ð Þ
w xð Þ

h i ;
ni xð Þ @P 0ð Þ

o xð Þ
@xi

þ rogdi1

� �
¼ �Qo xð Þ

exp Z
0ð Þ
o xð Þ

h i ; x 2 GN ; ð24Þ

first-order differential equations

@2P 1ð Þ
w xð Þ
@x2i

þ @Z 1ð Þ
w xð Þ
@xi

@P 0ð Þ
w xð Þ
@xi

þ rwgdi1

� �
þ @Z 0ð Þ

w xð Þ
@xi

@P 1ð Þ
w xð Þ
@xi

¼ 0;

@2P 1ð Þ
o xð Þ
@x2i

þ @Z 1ð Þ
o xð Þ
@xi

@P 0ð Þ
o xð Þ
@xi

þ rogdi1

� �
þ @Z 0ð Þ

o xð Þ
@xi

@P 1ð Þ
o xð Þ
@xi

¼ 0;

ð25Þ

with boundaries

P 1ð Þ
w xð Þ ¼ 0; P 1ð Þ

o xð Þ ¼ 0; x 2 GD; ð26Þ

ni xð Þ @P 1ð Þ
w xð Þ
@xi

þ Jwi xð ÞZ 1ð Þ
w xð Þ

� �
¼ 0;

ni xð Þ @P 1ð Þ
o xð Þ
@xi

þ Joi xð ÞZ 1ð Þ
o xð Þ

� �
¼ 0;

x 2 GN ; ð27Þ
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where Jwi (x) = @Pw
(0)(x)/@xi + rwgdi1 and Joi(x) = @Po

(0)(x)/
@xi + rogdi1; second-order differential equations

@2P 2ð Þ
w xð Þ
@x2i

þ @Z 2ð Þ
w xð Þ
@xi

@P 0ð Þ
w xð Þ
@xi

þ rwgdi1

� �

þ @Z 1ð Þ
w xð Þ
@xi

@P 1ð Þ
w xð Þ
@xi

þ @Z 0ð Þ
w xð Þ
@xi

@P 2ð Þ
w xð Þ
@xi

¼ 0;

@2P 2ð Þ
o xð Þ
@x2i

þ @Z 2ð Þ
o xð Þ
@xi

@P 0ð Þ
o xð Þ
@xi

þ rogdi1

� �

þ @Z 1ð Þ
o xð Þ
@xi

@P 1ð Þ
o xð Þ
@xi

þ @Z 0ð Þ
o xð Þ
@xi

@P 2ð Þ
o xð Þ
@xi

¼ 0;

ð28Þ

with boundaries

P 2ð Þ
w xð Þ ¼ 0; P 2ð Þ

o xð Þ ¼ 0; x 2 GD; ð29Þ

ni xð Þ @P 2ð Þ
w xð Þ
@xi

þ Z 1ð Þ
w xð Þ @P

1ð Þ
w xð Þ
@xi

þ Jwi xð ÞZ 2ð Þ
w xð Þ

� �
¼ 0;

ni xð Þ @P 2ð Þ
o xð Þ
@xi

þ Z 1ð Þ
o xð Þ @P

1ð Þ
o xð Þ
@xi

þ Joi xð ÞZ 2ð Þ
o xð Þ

� �
¼ 0;

x 2 GN :

ð30Þ

We assume that Pw
(1)(x), Po

(1)(x) can be expanded in terms of
a set of orthogonal Gaussian random variables xn, n = 1,
2, . . ., as defined in the Karhunen-Loeve decomposition:

P 1ð Þ
w xð Þ ¼

X1
n¼1

xnP
1ð Þ
w;n xð Þ; P 1ð Þ

o xð Þ ¼
X1
n¼1

xnP
1ð Þ
o;n xð Þ; ð31Þ

where Pw,n
(1) (x) and Po,n

(1) (x) are deterministic functions to be
determined.
[21] To simplify the mathematical representation using

KLME, we rewrite (15) as

Y 0 x; qð Þ ¼
X1
n¼1

xn qð Þ
ffiffiffiffiffi
ln

p
fn xð Þ ¼

X1
n¼1

xn qð Þfn xð Þ; ð32Þ

where
ffiffiffiffiffi
ln

p
is included in fn(x), since eigenvalues and

eigenfunctions are always coupled. To simplify mathema-
tical expression, we will write fn(x) as fn (x) in the following
formulation. Likewise, the KL expansion of b0(x) is

b0 x; qð Þ ¼
X1
n¼1

xn qð Þfn xð Þ; ð33Þ

where fn(x), like fn(x), is the set of eigenfunctions of the
covariance matrix of b(x).
[22] Substituting (31), (32), (33) and Zw

(1)(x), Zo
(1)(x)

(Appendix A) and their spatial derivatives into (25) yields
the infinite series in terms of xn, whose summation equals
zero. For example, the water phase equation in (25)
becomes

X1
n¼1

xn

(
@2P 1ð Þ

w;n

@x2i
þ @ Yh i

@xi
� aG

@P 0ð Þ
c

@xi
� P 0ð Þ

c

@aG

@xi

 �
@P 1ð Þ

w;n

@xi

� Jwi aG

@P 1ð Þ
c;n

@xi
� P 1ð Þ

c;n

@aG

@xi

 !
þ Jwi

"
@fn
@xi

� P 0ð Þ
c fn

@aG

@xi

� P 0ð Þ
c aG

@fn

@xi
� aGfn

@P 0ð Þ
c

@xi

#)
¼ 0: ð34Þ

Owing to the orthogonality and independence of the set xn,
n = 1, 2, . . ., all coefficients of this infinite series have to be
zero, which results in

@2P 1ð Þ
w;n

@x2i
þ @ Yh i

@xi
� aG

@P 0ð Þ
c

@xi
� P 0ð Þ

c

@aG

@xi

� �
@P 1ð Þ

w;n

@xi

¼ Jwi aG

@P 1ð Þ
c;n

@xi
� P 1ð Þ

c;n

@aG

@xi

 !

� Jwi
@fn
@xi

� P 0ð Þ
c fn

@aG

@xi
� P 0ð Þ

c aG

@fn

@xi
� aGfn

@P 0ð Þ
c

@xi

 �
; ð35Þ

with boundaries

P 1ð Þ
w;n xð Þ ¼ 0; x 2 GD; ð36Þ

ni xð Þ
@P 1ð Þ

w;n xð Þ
@xi

þ Jwi xð ÞZ 1ð Þ
w;n xð Þ

" #
¼ 0; x 2 GN : ð37Þ

Similarly, we can obtain the KLME for the oil pressure:

@2P 1ð Þ
o;n

@x2i
þ @ Yh i

@xi
þ aaG

@P 0ð Þ
c

@xi
þ aP 0ð Þ

c

@aG

@xi

� �
@P 1ð Þ

o;n

@xi

¼ �Joi aP 1ð Þ
c;n

@aG

@xi
þ aaG

@P 1ð Þ
c;n

@xi
þ aGP

1ð Þ
c;n

@a

@xi

 !

� Joi
@fn
@xi

þ aaGfn

@P 0ð Þ
c

@xi


þ aaGP

0ð Þ
c

@fn

@xi
þ afnP

0ð Þ
c

@aG

@xi

þ aGfnP
0ð Þ
c

@a

@xi

�
; ð38Þ

with boundaries

P 1ð Þ
o;n xð Þ ¼ 0; x 2 GD; ð39Þ

ni xð Þ
@P 1ð Þ

o;n xð Þ
@xi

þ Joi xð ÞZ 1ð Þ
o;n xð Þ

" #
¼ 0; x 2 GN ; ð40Þ

where the decomposed first-order phase mobilities are given
from (A7):

Z 1ð Þ
w;n xð Þ ¼ fn � aG P 1ð Þ

c;n þ fnP
0ð Þ
c

� �
Z 1ð Þ
o;n xð Þ ¼ fn þ aaG P 1ð Þ

c;n þ fnP
0ð Þ
c

� �
:

ð41Þ

According to the definitions of fn(x) and fn(x) , all the
driving terms in (35), (38) are proportional to eigenvalues of
covariance functions of intrinsic permeability and pore size
distribution, which decrease monotonically as n increases.
This guarantees that the contributions of Pw,n

(1) to Pw
(1), and

Po,n
(1) to Po

(1) decrease with n. The KLME derivation of the
second-order pressures, Pw

(2), and Po
(2), is presented in

Appendix B.
[23] Up to second order in ss, fluid pressure is

approximated by

Pw xð Þ �
X2
i¼0

P ið Þ
w xð Þ; Po xð Þ �

X2
i¼0

P ið Þ
o xð Þ: ð42Þ
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For the water pressure, the mean is approximated by

Pw xð Þh i � P 0ð Þ
w xð Þ

D E
þ P 1ð Þ

w xð Þ
D E

þ P 2ð Þ
w xð Þ

D E
¼ P 0ð Þ

w xð Þ þ
X1
j¼1

P
2ð Þ
w;jj xð Þ: ð43Þ

From (42) and (43), the second-order perturbation terms can
be written as

P0
w xð Þ ¼ Pw xð Þ � Pw xð Þh i � P 1ð Þ

w xð Þ þ P 2ð Þ
w xð Þ � P 2ð Þ

w xð Þ
D E

:

ð44Þ

The covariance of Pw(x), Pw(y) can be derived as

CPw
x; yð Þ ¼

X1
n¼1

P 1ð Þ
w;n xð ÞP 1ð Þ

w;n yð Þ þ 2
X1
j;k¼1

P
2ð Þ
w;jk xð ÞP 2ð Þ

w;jk yð Þ: ð45Þ

The covariance between Y, b and Pw or Po, cross covariance
between Pw and Po can be constructed in a similar manner.
[24] One of the superiorities of the KLME approach

relative to other stochastic methods is that, once we obtain
Pw,i1,i2,. . .,i‘
(l) (x), Po,i1,i2,. . .,i‘

(l) (x), l = 0, 1, 2,.. . ., we can directly
compute the high-order mean and covariance of each phase
pressure without solving equations for covariance and cross
covariance of phase pressure, log relative permeability
required in the CME methods, hence it is more efficient
computationally.

5. Numerical Implementation

[25] The zeroth-order equations (22) are nonlinear and
the first, second-order KLME equations (equations (35),
(38), (B2), and (B3)) are linear but coupled. In general,
such equations cannot be solved analytically. We use a
finite difference scheme to solve them numerically.
[26] The final discretized equations can be expressed

as

AP ¼ R; ð46Þ

where A is the coefficient matrix, P is the solution vector
for Pw

(0), Pw,n
(1) , Pw,jk

(2) and Po
(0), Po,n

(1), Po,jk
(2) , and R is a vector

containing information about the RHS (right hand side) of
each equation and the boundary conditions. The matrix A
is the same for problem sets in different orders and only
needs to be decomposed once. The driving force R has to
be substituted as many times as the number of different
RHS vectors. The zeroth-order flow equations are non-
linear and coupled, and need to be solved in an iterative
manner. The first- and second-order equations are linear
but coupled, and also need necessary iterations to
converge. The zeroth-order solution needs more iteration
than the first- and second-order solutions to converge,
because the zeroth-order equations are nonlinear while the
higher-order equations are linear. Solving the higher-order
equations requires all the lower-order solutions. This two-
dimensional finite difference scheme for stochastic two-
phase flow has been implemented into a computer Fortran

code called ‘‘STO-2PHASE.’’ Currently, this code is
capable of handling steady state two-phase flow, with
regular nonuniform grids features.

6. Illustrative Examples

[27] Two examples are used to illustrate the validity of
this approach for stochastic water-oil flow in heterogeneous
soil. In both cases the log-transformed intrinsic permeability
Y and pore size distribution parameter b are assumed to be
second-order stationary with a separable exponential
covariance function:

Cw x; yð Þ ¼ s2w exp � x1 � y1j j
hw1

� x2 � y2j j
hw2

 �
; ð47Þ

where w = Y or b, sw
2 is the variance of w, and hwi is the

correlation length of w in the ith direction.

6.1. Baseline Case

[28] In this first case, we start by determining how
many first-order and second-order terms are sufficient to
capture the uncertainty of the soil properties, and then
show the validity of the proposed stochastic numerical
KLME model by comparing the KLME results to the
Monte Carlo simulation. We consider a rectangular grid
of 16 � 50 square elements in a vertical cross section
(Figure 1) having a height of 3.0 m and a width of 0.96 m.
The size of elements is 0.06 m � 0.06 m. The boundary
condition are specified as follows: (1) no flow at left and
right sides (x2 = 0, x2 = 0.96 m); (2) constant deterministic
water and oil infiltration rates Qw, Qo at the top (x1 = 3.0 m);
and (3) water and oil phase pressure Pw, Po specified at the
bottom of the domain. The input parameters are given in
Table 1.
[29] To investigate the number of terms that are sufficient

to capture the uncertainty of the random field, and yet as
few as possible to reduce the computational effort, we
designed a series of numerical simulations with different
number of the first-order terms (term1) and second-order
terms (term2). Because capillary pressure is the coupled
element between water phase and oil phase flow equations,
as well as the key parameter in phase relative permeability
model, the validity of capillary pressure solution can dem-
onstrate sufficiently the validity of the output of the whole
flow system. Figure 2a shows a series of variance of
capillary pressure along the central vertical line with
term1 = 100, 150, 200, 300, and 500 while fixing the
number of the second-order terms to 60. There is little
difference between the results from term1 = 300 and
term1 = 500, compared with the differences among
term1 = 100, 150, 200 and 300. It is apparent that
increasing term1 beyond 300 contributes little to explaining
capillary pressure variance. Fixing term1 = 300, we ran a
series of simulations with term2 = 60, 70, 80, 90, 100, and
120. Figure 2b presents the results. Beyond term2 = 100, the
variance of capillary pressure increases only slightly. Thus
the combination of term1 = 300 and term2 = 100 was chosen
for KLME method for the comparison against Monte Carlo
simulation.
[30] To test the validity of the KLME approach and the

numerical implementation, we conducted 2000 Monte Carlo
simulations. Two thousand 2-D random soil properties
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fields were generated with the separable covariance function
(47) using the Gaussian Sequential Simulation approach
available in GSLIB [Deutsch and Journel, 1998]. The
deterministic solver solved the 2000 water, oil pressure and
capillary pressure fields, and statistical moments were
calculated based on these fields. These statistics are
considered true solutions that are used as a reference to
compare our KLME approach at various orders. As shown
in Figure 3, the second-order KLME results have a good
match with the MC simulation and improve on the lower-
order solutions. The average error for first-order and
second-order cases are 8.4% and 3.3%, and the maximum
errors are 10.5% and 6.7% for first- and second-order cases,
respectively.
[31] Figure 4 presents contour maps of water, oil and

capillary pressure means. The means of water and oil
pressure are specified at the lower boundary, and increase
upward along the vertical direction approximately linearly.
The capillary pressure decreases with elevation, and
remains almost constant in the area near the upper bound-
ary, which is similar to gravity dominated flow (water) in
unsaturated flow system. The central vertical section of the
capillary pressure in Figure 3 clearly indicates this kind of
trend.
[32] Figure 5 presents contour maps of water, oil and

capillary pressure variances. The variances are zero at the
bottom boundary of constant pressure and increase in the
vertical direction upward. In the horizontal direction,
the pressure variances are largest at the two lateral boundaries
and decrease toward the center of the domain, especially for

capillary pressure. The behavior of capillary pressure var-
iances in this case (water-oil) is similar to the head variance
under steady state unsaturated flow [Zhang and Winter,
1998].
[33] The number of terms required to approximate Pw,n

(1) ,
Pw,jk
(2) and Po,n

(1) , Po,jk
(2) determine the computational effort of the

KLME approach. As discussed above, we took 300 and 100
terms for the first and second order, respectively. To obtain
Pw,i1,i2,. . .im
(m) , where ij = 1; n, the number of times required to

solve an equation is Sm = n(n + 1) � � � (n + m � 1)/m!. In our
case, when m = 1, n = 300, so we need to solve the first-
order equations for S1 = 300 times, while S2 = 100*(100 +
1)/2 = 5050 times for m = 2. Unlike saturated and
unsaturated one phase flow, this two-phase flow is a
coupled system, so that solving the linear discretized first-
and second-order equations also requires a number of
iterations. With the particular solver that we used, solving
for the zeroth-order solution needs about 50 iterations,
whereas the first- and second-order solutions usually
converge after 5 iterations each, so the total number of
runs for KLME is about 50 + 5*(300 + 5050) = 26,800.
With a similar solver, each realization of the Monte Carlo
(MC) simulation converges after about 100 iterations, since
the parameter fields are not so smooth as in the KLME
approach. Thus 200,000 iterations are required for 2000 MC
simulations, which is nearly 8 times of the effort in the
KLME approach. The actual run time for KLME is
1–2 hours, while MC simulation requires 1–2 days in the
same computer. For a larger domain, the increased
simulation time might be quite significant.

6.2. Case 2: Larger SY
2

[34] In this second case, we increase the variance of the
log-transformed intrinsic permeability, sY

2, from 0.25
(intrinsic permeability Coefficient of Variation, CV =
53%) to 0.81 (CV = 112%). The large infiltration along
with high-permeability variance may cause divergence
problem in the Monte Carlo simulations, so we decrease
both water and oil infiltration to 1.0 � 10�10 m/s. Figure 6
presents the a good match of mean and variance of capillary
pressure between up to second-order KLME simulations
and 4000 Monte Carlo simulations along the central vertical
section. The average error for first-order and second-order
cases are 8.4% and 3.1%, and the maximum errors are

Figure 1. Domain and boundary.

Table 1. Soil and Fluid Properties and Boundary Conditions

Parameter Name Symbol Units Case 1 Case 2

Water density rw kg/m3 1000 1000
Oil density ro kg/m3 400 400
Water viscosity mw Pa s 1.0 � 10�3 1.0 � 10�3

Oil viscosity mo Pa s 6.5 � 10�4 6.5 � 10�4

Mean log permeability hYi ln (m2) �33.0 �33.0

Mean log pore size distribution hbi ln (1/Pa) �9.0 �9.0

Variance log permeability sY
2 0.25 0.81

Variance log pore size distribution sb
2 0.01 0.01

Coefficient of variation (k), % CV(k) 53 112
Coefficient of variation (a), % CV(a) 10 10
Correlation length hY, hb m 0.3 0.3
Upper boundary water flux Qw m/s 6.8 � 10�91.0 � 10�10

Upper boundary oil flux Qo m/s 2.4 � 10�81.0 � 10�10

Lower boundary water pressure Pw Pa 1.0 � 105 1.0 � 105

Lower boundary oil pressure Po Pa 1.16 � 105 1.5 � 105
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10.4% and 6.2% for first- and second-order cases,
respectively. Under this larger sY

2, more Monte Carlo
realizations (4000) are required for the statistical moments
to converge, while only more 100 terms of the first-order
(term1) are required for the KLME approach, hence the
computing efficiency of the KLME approach over Monte
Carlo approach is more apparent. As expected, the higher
the order (zeroth, first, or second) of the KLME, the better
the approximation to the Monte Carlo statistics. However,
with the increase in sY

2, the differences among the Monte
Carlo simulation, the first- and second-order KLME are
greater than those in smaller sY

2. The behavior of capillary
pressure does not appear to have a gravity-dominated flow
regime as in case 1, due to the smaller fluid infiltrations.
However, the vertical spatial gradient of capillary pressure
decreases significantly with elevation.
[35] Figures 7 and 8 present the contour map of means

and variances of fluid pressures and capillary pressure using
the KLME approach. Owing to the smaller infiltration rate
at the top boundary, the mean water, oil pressures decrease
upward vertically, instead of increasing as in case 1.
However, with gravitational force, the flow is still down-
ward for water and oil. Capillary pressure decreases as in
case 1. Generally, large fluxes or large variances of soil
random variables will lead to large pressure head variances.
The variance of oil pressure shown in Figure 8 is about
4 orders of magnitude smaller than that in case 1, because
the oil infiltration rate is 1/240 of case 1 (1.0 � 10�10 m/s
versus 2.4 � 10�8 m/s), while sY

2 increase only by a factor
of 3. The water pressure and capillary pressure variances
change little from case 1, because the water infiltration rate

is similar to the first example (1.0 � 10�10 m/s versus 6.8 �
10�9 m/s) and the effect of sY

2 increase on water pressure
variance can overcome the effect of water infiltration
decrease.

7. Summary and Conclusions

[36] A stochastic two-phase flow numerical model was
developed based on Karhunen-Loeve and polynomial
expansions to evaluate higher-order moments for two-
phase flow in randomly heterogeneous subsurface zone.
The log-transformed intrinsic permeability Y(x) and the
soil pore size distribution parameter b(x) were assumed to
be Gaussian random functions with the separable exponen-
tial covariance functions. Y(x) and b(x) were first decom-
posed into the infinite series related to the eigenvalues and
eigenfunctions of the covariance functions of Y(x) and b(x)
as well as a set of standard Gaussian random variables {xn}
by Karhunen-Loeve expansions. Then, the fluid pressure
and capillary pressure were decomposed into the series
whose terms Pw

(n), Po
(n), Pc

(n) are nth order in combination of
sY or sb. We then further expanded Pw

(n), Po
(n), Pc

(n) into series
in terms of the product of n Gaussian random variables used
in Karhunen-Loeve expansion of Y(x) and b(x), which leads
to sets of equations for calculating the deterministic
coefficients in these expansions. We developed a code for
the stochastic numerical model and solve these coefficients,
which were used to compute moments of fluid pressure and
capillary pressure directly. We demonstrated the KLME
approach with two cases of steady state water-oil flow in a
two-dimensional rectangular domain and compared the

Figure 2. Pc variance along central vertical cross section: (a) fixed term2 = 60, different term1; (b) fixed
term1 = 300, different term2.
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results with those from Monte Carlo simulations. The main
findings of this paper are summarized as follows.
[37] 1. The KLME method is applicable to stochastic

analysis of multiphase flow and this makes it possible to

evaluate higher-order flow moments with smaller computa-
tional effort.
[38] 2. The comparison of KLME results with Monte

Carlo simulations indicates that this proposed stochastic

Figure 3. Comparison of capillary pressure (Pc) in case 1 (along central vertical cross section) between
KLME and Monte Carlo simulation: (a) mean Pc; (b) variance of Pc.

Figure 4. Contour map of mean fluid pressure and capillary pressure (Pa) in case 1: (a) water phase;
(b) oil phase; (c) capillary pressure.
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Figure 5. Contour map of variance of fluid pressure and capillary pressure in case 1: (a) water phase;
(b) oil phase; (c) capillary pressure.

Figure 6. Comparison of capillary pressure (Pc) in case 2 (along central vertical cross section) between
KLME and Monte Carlo (MC) simulation: (a) mean Pc; (b) variance Pc.
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approach and the executable numerical model produce
very similar results, and the KLME approach is much
more efficient than MC simulations.
[39] 3. Unlike saturated or unsaturated flow, the water-

oil two-phase flow is a coupled system, so all the zeroth-,
first- and second-order equations need several iterations to

converge on a solution. However, the first- and second-
order discretized equations are linear and require less
iteration than the zeroth-order equations, which are non-
linear. In addition, the left hand coefficient matrix is the
same in zeroth-, first- and second-order perturbations
equations. These features make the numerical modeling

Figure 7. Contour map of mean fluid pressure and capillary pressure (Pa) in case 2: (a) water phase;
(b) oil phase; (c) capillary pressure.

Figure 8. Contour map of variance of fluid pressure and capillary pressure in case 2: (a) water phase;
(b) oil phase; (c) capillary pressure.
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very efficient because it is not necessary to rebuild the
coefficient matrix for different orders of the perturbation
equations in every iteration calculation.
[40] 4. The KLME approach is likely to have a significant

application in large heterogeneous multiphase systems,
where uncertainty analysis requires new approaches to
understand the implications of these nonlinear, coupled
systems.

Appendix A

[41] According to (18) and (19),

Zw xð Þ ¼ lnlw xð Þ ¼ Y xð Þ � ln mw � exp b xð Þ½ 	Pc xð Þ

Zo xð Þ ¼ lnlo xð Þ ¼ Y xð Þ � ln mo þ ln 1� exp � exp b xð Þ½ 	Pc xð Þ½ 	f g;
ðA1Þ

where Y(x) and b(x) are the random inputs of the system and
can be written as

Y xð Þ ¼ Y xð Þh i þ Y 0 xð Þ

b xð Þ ¼ b xð Þh i þ b0 xð Þ;
ðA2Þ

where hY(x)i and hb(x)i are the expected mean of Y(x) and
b(x), and Y0(x) and b0(x) are the zero mean perturbation
terms, which can be decomposed by the Karhunen-Loeve
expansion presented in Section 3.
[42] In (A1), up to the second order,

exp bð Þ ¼ exp bh i þ b0ð Þ ¼ exp bh ið Þ exp b0ð Þ � aG 1þ b0 þ b02

2

 �
;

ðA3Þ

where aG = exp (hbi). Substituting (A2) and (20) into (A1),
one obtains a series of Zw(x) and Zo(x), and their spatial
derivative in different orders. For the zero order,

Z 0ð Þ
w xð Þ ¼ Y xð Þh i � ln mw � aG xð ÞP 0ð Þ

c xð Þ

Z 0ð Þ
o xð Þ ¼ Y xð Þh i � ln mo þ ln 1� exp �aG xð ÞP 0ð Þ

c xð Þ
� �� � ðA4Þ

and

@Z 0ð Þ
w xð Þ
@xi

¼ @ Y xð Þh i
@xi

� aG xð Þ @P
0ð Þ
c xð Þ
@xi

� P 0ð Þ
c xð Þ @aG xð Þ

@xi

@Z 0ð Þ
o xð Þ
@xi

¼ @ Y xð Þh i
@xi

þ a xð Þ
�
aG xð Þ@P

0ð Þ
c xð Þ
@xi

þ P 0ð Þ
c xð Þ @aG xð Þ

@xi

�
;

ðA5Þ

where

a xð Þ ¼
exp �aG xð ÞP 0ð Þ

c xð Þ
� �

1� exp �aG xð ÞP 0ð Þ
c xð Þ

h i : ðA6Þ

To simplify the mathematical representation, we omit (x) in
the first- and second-order equations; however note that
every term in these equations is a function of space node
(x). For the first order,

Z 1ð Þ
w xð Þ ¼ Y 0 � aG P 1ð Þ

c þ b0P 0ð Þ
c

� �
Z 1ð Þ
o xð Þ ¼ Y 0 þ aaG P 1ð Þ

c þ b0P 0ð Þ
c

� � ðA7Þ

and

@Z 1ð Þ
w xð Þ
@xi

¼ @Y 0

@xi
� aG

P 1ð Þ
c

@xi
þ b0

@P 0ð Þ
c

@xi
þ P 0ð Þ

c

@b0

@xi

 �

� @aG

@xi
P 1ð Þ
c þ b0P 0ð Þ

c

� �
@Z 1ð Þ

o xð Þ
@xi

¼ @Y 0

@xi
þ aaG

P 1ð Þ
c

@xi
þ b0

@P 0ð Þ
c

@xi
þ P 0ð Þ

c

@b0

@xi

 �

þ a
@aG

@xi
P 1ð Þ
c þ P 0ð Þ

c b0
� �

þ @a

@xi
aG P 1ð Þ

c þ b0P 0ð Þ
c

h i
:

ðA8Þ
For the second order,

Z 2ð Þ
w xð Þ ¼ �aG P 2ð Þ

c þ b0P 1ð Þ
c þ b02

2
P 0ð Þ
c

 �

Z 2ð Þ
o xð Þ ¼ Z21P

2ð Þ
c þ Z22 P 1ð Þ

c

� �2þZ23b0P 1ð Þ
c þ Z24 b0½ 	2;

ðA9Þ

where

Z21 xð Þ ¼ aaG � a2a2
GP

0ð Þ
c ;

Z22 xð Þ ¼ � 1

2
aa2

G � 1

2
a2a2

G;

Z23 xð Þ ¼ aaG � aa2
GP

0ð Þ
c � a2a2

GP
0ð Þ
c ;

Z24 xð Þ ¼ 1

2
aaGP

0ð Þ
c � 1

2
aa2

G P 0ð Þ
c

h i2
� 1

2
a2a2

G P 0ð Þ
c

h i2
and

@Z 2ð Þ
w xð Þ
@xi

¼ � ah iP
2ð Þ
c

@xi
� P 2ð Þ

c

@ ah i
@xi

� a0 P
1ð Þ
c

@xi
� P 1ð Þ

c

@a0

@xi

@Z 2ð Þ
o xð Þ
@xi

¼ Z21
@P 2ð Þ

c

@xi
þ P 2ð Þ

c dZ21 þ 2Z22P
1ð Þ
c

@P 1ð Þ
c

@xi
þ P 1ð Þ

c

� �2
dZ22

þ Z23 a0 @P
1ð Þ
c

@xi
þ P 1ð Þ

c

@a0

@xi

� �
þ a0P 1ð Þ

c dZ23 þ 2Z24a0 @a
0

@xi

þ a0ð Þ2dZ24; ðA10Þ

where

dZ21 ¼
@Z21
@xi

¼ aG

@a

@xi
þ a

@aG

@xi

 �

� 2a2
GP

0ð Þ
c a

@a

@xi
þ a2

Ga
2 @P

0ð Þ
c

@xi
þ 2aGa

2P 0ð Þ
c

@aG

@xi

 �
;

dZ22 ¼
@Z22
@xi

¼ � 1

2
a2
G

@a

@xi
þ 2aGa

@aG

@xi

 �

� a2
Ga

@a

@xi
þ a2aG

@aG

@xi

 �
;

dZ23 ¼
@Z23
@xi

¼ aG

@a

@xi
þ a

@aG

@xi

 �

� a2
GP

0ð Þ
c

@a

@xi
þ aa2

G

@P 0ð Þ
c

@xi
þ 2aaGP

0ð Þ
c

@aG

@xi

 �

� 2aa2
GP

0ð Þ
c

@a

@xi
þ a2

Ga
2 @P

0ð Þ
c

@xi
þ 2a2P 0ð Þ

c aG

@aG

@xi

 �
;

dZ24 ¼
@Z24
@xi

¼ 1

2
aaG

@P 0ð Þ
c

@xi
þ aP 0ð Þ

c

@aG

@xi
þ aGP

0ð Þ
c

@a

@xi

 �

� 2aa2
GP

0ð Þ
c

@P 0ð Þ
c

@xi
þ 2a P 0ð Þ

c

� �2
aG

@aG

@xi
þ a2

G P 0ð Þ
c

� �2@a
@xi

 �

� 2 a2a2
GP

0ð Þ
c

@P 0ð Þ
c

@xi
þ a2 P 0ð Þ

c

� �2
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@aG

@xi



þ a2
G P 0ð Þ

c

� �2
a
@a

@xi

�
:
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Appendix B

[43] Following the same steps as the derivation of the first
order pressures, Pw

(1)(x), Po
(1)(x), we can expand Pw

(2), Po
(2) in

terms of xjxk:

P 2ð Þ
w xð Þ ¼

X1
j;k¼1

xjxkP
2ð Þ
w;jk xð Þ; P 2ð Þ

o xð Þ ¼
X1
j;k¼1

xjxkP
2ð Þ
o;jk xð Þ: ðB1Þ

The second-order KLME equations can be derived from (28):

@2P
2ð Þ
w;jk

@x2i
þ @ Yh i

@xi
� aG

@P 0ð Þ
c

@xi
� P 0ð Þ

c

@aG

@xi

� �
@P

2ð Þ
w;jk

@xi

¼ Jwi aG

@P
2ð Þ
c;jk

@xi
þ P

2ð Þ
c;jk

@aG

@xi

 !
þ 1

2
Jwi aGfj

@P
1ð Þ
c;k

@xi
þ aGfk

@P
1ð Þ
c;j

@xi

 

þ aGP
1ð Þ
c;j

@fk

@xi
þ aGP

1ð Þ
c;k

@fj

@xi
þ aGfjfk

@P 0ð Þ
c

@xi
þ aGfjP

0ð Þ
c

@fk

@xi

þ aGfkP
0ð Þ
c

@fj

@xi
þ fjP

1ð Þ
c;k

@aG

@xi
þ fkP

1ð Þ
c;j

@aG

@xi
þ fjfkP

0ð Þ
c

@aG

@xi

!

� 1

2

@P
1ð Þ
w;j

@xi

 
@fk
@xi

� @aG

@xi
P

1ð Þ
c;k þ fkP

0ð Þ
c

� �

� aG

@P
1ð Þ
c;k

@xi
þ fk

@P 0ð Þ
c

@xi
þ P 0ð Þ

c

@fk

@xi

 !!

� 1

2

@P
1ð Þ
w;k

@xi

 
@fj
@xi

� @aG

@xi
P

1ð Þ
c;j þ fjP

0ð Þ
c

� �

� aG

@P
1ð Þ
c;j

@xi
þ fj

@P 0ð Þ
c

@xi
þ P 0ð Þ

c

@fj

@xi

 !!
; ðB2Þ

with boundaries
P

2ð Þ
w;jk xð Þ ¼ 0; x 2 GD;

ni xð Þ
"
@P

2ð Þ
w;jk xð Þ
@xi

þ 1

2
Z

1ð Þ
w;j xð Þ

@P
1ð Þ
w;k xð Þ
@xi

þ Z
1ð Þ
w;k xð Þ

@P
1ð Þ
w;j xð Þ
@xi

 !

þ Jwi xð Þ Z
2ð Þ
w;jk xð Þ þ 1

2
Z

1ð Þ
w;j xð ÞZ 1ð Þ

w;k xð Þ
 �#

¼ 0; x 2 GN ;

@2P
2ð Þ
o;jk

@x2i
þ @ Yh i

@xi
þ aaG

@P 0ð Þ
c

@xi
þ aP 0ð Þ

c

@aG

@xi

� �
@P

2ð Þ
o;jk

@xi

¼ �Joi Z21
@P

2ð Þ
c;jk

@xi
þ P

2ð Þ
c;jkdZ21

 !
� Joi Z22P

1ð Þ
c;j

@P
1ð Þ
c;k

@xi

 

þ Z22P
1ð Þ
c;k

@P
1ð Þ
c;j

@xi
þ P

1ð Þ
c;j P

1ð Þ
c;k dZ22 þ

1

2
Z23P

1ð Þ
c;j

@fk

@xi
þ 1

2
Z23P

1ð Þ
c;k

@fj

@xi

þ 1

2
Z23fj

@P
1ð Þ
c;k

@xi
þ 1

2
Z23fk

@P
1ð Þ
c;j

@xi
þ 1

2
fjP

1ð Þ
c;k dZ23 þ

1

2
fkP

1ð Þ
c;j dZ23

þ Z24fj

@fk

@xi
þ Z24fk

@fj

@xi
þ fjfkdZ24

!
� 1

2

@P
1ð Þ
o;j

@xi

� @fk
@xi

þ aaG

@P
1ð Þ
c;k

@xi
þ fk

@P 0ð Þ
c

@xi
þ P 0ð Þ

c

@fk

@xi

 !"

þ a P
1ð Þ
c;k þ fkP

0ð Þ
c

� � @aG

@xi
þ aG P

1ð Þ
c;k þ fkP

0ð Þ
c

� � @a

@xi

#
� 1

2

@P
1ð Þ
o;k

@xi

� @fj
@xi

þ aaG

@P
1ð Þ
c;j

@xi
þ fj

@P 0ð Þ
c

@xi
þ P 0ð Þ

c

@fj

@xi

 !"

þ a P
1ð Þ
c;j þ fjP

0ð Þ
c

� � @aG

@xi
þ aG P

1ð Þ
c;j þ fjP

0ð Þ
c

� � @a

@xi

#
; ðB3Þ

with boundaries

P
2ð Þ
o;jk xð Þ ¼ 0; x 2 GD;

ni xð Þ
@P

2ð Þ
o;jk xð Þ
@xi

"
þ 1

2
Z

1ð Þ
o;j xð Þ

@P
1ð Þ
o;k xð Þ
@xi

þ Z
1ð Þ
o;k xð Þ

@P
1ð Þ
o;j xð Þ
@xi

 !

þ Joi xð Þ Z
2ð Þ
o;jk xð Þ þ 1

2
Z

1ð Þ
o;j xð ÞZ 1ð Þ

o;k xð Þ
 ��

¼ 0;

x 2 GN ;

where the decomposed second order phase mobility is

Z
2ð Þ
w;jk xð Þ ¼ �aG P

2ð Þ
c;jk þ

1

2
fjP

1ð Þ
c;k þ

1

2
fkP

1ð Þ
c;j þ

1

2
fjfkP

0ð Þ
c

 �

Z
2ð Þ
o;jk xð Þ ¼ Z21P

2ð Þ
c;jk þ Z22P

1ð Þ
c;j P

1ð Þ
c;k þ

1

2
Z23 fjP

1ð Þ
c;k þ fkP

1ð Þ
c;j

� �
þ Z24fjfk :

Note that the above second order terms are written in a
symmetric style.
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